
We have thus shown that for  a given separable  potential  of the fo rm (21) an energy value is found for 
which the homogeneous equation (9) has an infinite number of solutions. Hence, the corresponding inhomo- 
geneous equation (4) also has an infinite number  of solutions. 

We point out that the sat isfact ion of condition (12) for separable  potentials leads to the r e su l t  that the 
sy s t e m of integral  equations der ived  f rom the o p e ra to r  equat ions [3], 

T~z (z') = 62 (zi,) + 6, (z~2) 60 (z') Ta (z'), 

Ts, (z') = t~ (z~) + ta (zs0 60 (z') T~2 (z'), 

where  

Tl~(z') + Tu(z')  = T(z') 

and T(z ' )  sa t is f ies  Eq. (2), has the same proper t i e s  as does the or iginal  equation (1). The cor respondinghomo-  
geneous sys t em can have an infinite number  of solutions,  and the inhomogeneous sys t em can have an infinite 
number  of  solutions or  be incompatible.  The r e su l t s  of this study can be genera l ized  to the sca t te r ing  problem 
of five or  more  bodies under the assumption of pair  interact ions.  
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A solution is obtained for  the problem of heat conduction in a one-dimensional  r ing  consist ing 
of two sect ions with different  lengths,  heat sources ,  and thermophysica l  pa rame te r s .  

The prob lem of the heat conduction in a r ing  [1] is an example of a boundary-value problem in which the re  
a re  no boundary conditions of the f i r s t ,  second, and th i rd  kinds modeling the effect of the external  medium on 
the sys tem.  In view of the s y m m e t r y  of the problem,  these  conditions a r e  rep laced  by the per iodic i ty  condition 
for the solution. Such "se l f -c losed"  sys tems  may se rve  as mathematical  models of different  p rocesses  of heat 
and mass  t r ans fe r  [2, 3]. 

w 1. Consider the prob lem of determining the t e m p e r a t u r e  field in a one-dimensional  composi te  r ing,  the 
n sect ions of which have different  lengths,  thermophys iea l  p a r a m e t e r s ,  and heat sources .  Any of the sect ions 
may be r e ga r de d  as a sy s t em interact ing with its "environment"  - the other  sect ions.  The initial t empe ra tu r e  
distr ibution in the different  sect ions of the r ing is descr ibed  by different  functions and is discontinuous at the 
contact points,  where boundary conditions of the fourth kind a re  assumed.  Since a one-dimensional  problem is 
considered,  the shape of the r ing is unimportant ,  as in [1]. A l inear  coordinate  x i is introduced for each section,  
xi~ (0 , / i ) ,  i =1, 2 . . . .  , n. The mathemat ica l  formulat ion of the l inear  heat-conduction problem for a composi te  
r ing  takes the fo rm 

07"i 02i'i 
Ot ai--~-i~ = f i + c h 8 ( t ) ,  t ~ 0 ,  xiE(O, l~), (1.1) 

dO O(t) ---- { t, t > 0  
r = r (x~), 8 (t) = ~ ,  o, t ~ o, 
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5r~ (x .  + o) = ~i (x+), xi E (o, 13, 

Ti(l+--0, t ) =  7'++,(+ 0, t), t > 0  (i=#n), 

f '~(+ o, t ) =  f ' . ( t . - - o ,  t), t > o ,  
. # 

OT++t(+ O, t) 07"i(l~--O, t) = ~i+t , t > O  
Ox~ axi +~ 

x, o~ ' , (+o ,  t) = z .  o f ' . ( t . - - o ,  t) 
OX l OXa 

(1.2) 
(1.3) 
(1.4) 

(i =/= n), (t.  

, t > o .  ( ] . 6 )  

The sys tem (1.1) together  with the conditions (1.2)-(1.6) consti tute a general ized Cauchy problem [4], the 
solution of which is cons t ructed  in two stages.  The f i rs t  stage is to solve the f i rs t  boundary-value problem 
(1.1)-(1.4); for this purpose,  "matching" functions a re  introduced: 

~+(t) = T+(+O, t), t > 0  (i = 1, 2 . . . . .  n). (1.7) 

As a resu l t ,  the functions ~i(xi,  t) a r e  found; these include d i f f e re~ ia l  and integral  express ions  in ~t(t). The 
second stage is to use the conditions (1.5) and (1.6). Substituting Ti(xi, t) into Eqs. (1.5) and (1.6), a sys t em of 
n integral  equations of convolution type in the n unknown functions pi(t) is obtained; this sys t em may be solved 
using a Laplace t r ans fo rm.  So as to obtain explicit  express ions ,  considerat ion is l imited to the case  n =2 in 
the present  work. It is expedient to super impose  the coordinate  origins of the axes  x i (i =1, 2), which resu l t s  
in sign r e v e r s a l  of one of the the rma l  flaxes in Eqs. (1.5) and (1.6) and redefini t ion of the matching functions: 

~,(t) = ~'~(+o, t), g~(t) = ~ ( t + - o ,  t) ( i =  l, 2). 

The Green-funct ion method [5] gives 

where 

t l i 

"7"~,(x+, t) = +I S ~(x~' ~' t--T);+ (~, T)d~dT+,(q(x,, t), 
0 0 

w 

20(t) E~ ~ sin ~ x i  sin ~ 8, (x,, i, t) ~ .=, 

(1.8) 

is the Green function of the f i rs t  boundary-value problem for the segment,  

2,~ (x.  t) = f: (x. t) + ,~ (x3 ~ (t)--  d ~  
dt 

(1.9) 
~4 (x+, t) = ~, (t) § ~ (~  (t) - -  p, (t)), 

n~ ]2a. t 

Substituting Eq. (1.8) into Eqs. (1.5) and (1.6) y~elds a s y s t e m  of two integral  equations of convolution type in 
the two unknown functions pj(t) 0 =1, 2). If a Laplace t r a n s f o r m  is now applied to this  sys tem,  the resu l t  is 

2 

X akj (p) ~ (p) = ~h(P) (k = l, 2). (1.10) 
i= l  

In Eq. (1.10), ctg(P) and ~=kj (P) are Laplace transforms of certain functions of the time; /~j(p) are the transforms 
of the functions ~j(t); p is the Lap l ace - t r ans fo rm pa rame te r  (omitted below). 

w 2. Thus, the boundary-value problem reduces  to the algebraic  sys t em (1.10). Solving sys tem (1.10) and 
per forming  an inverse  Laplace t r a n s f o r m  yields ~j(t),  substitution of which into Eqs. (1.9) and (1.8) completes  
the solution. When Rep ~_ a0 > 0, Det [l~kj (P) II ~ 0; this allows a unique solution of Eq. (1.1O) to be obtained in 
the fo rm 

~ = ~ ' )  + ~ ? ' .  (2.1) 

where  

= § (--1);+' N_ r + ,  (2.2) 

(2.3) 
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~. ~ ~(~) ~--i ~(~) F~) = 2 ~t, T m~- ]  ~ ~k-~, 
/~==1 

?~)=2 (p+v2~ ~, 
k = l  

(2 .4 )  

(2.5) 

(2 .6)  

I i 

~l, ,= 77,.  [f' (~" p) + ~'(~)l ~ ~, n,~ ~ ~in -i7' ~ ,  
0 

~ = VX~ (Pc)s, 6i = IdV'~,  fJ(~) = (mtll~)2a~. (2.7) 

The  i n v e r s e  t r a n s f o r m  is  t r i v i a l  for  al l  the  funct ions  excep t  N•  which  a r e  t r a n s f o r m e d  us ing  r e s i d u e s  [6]: 

N_ (t) = ~ A_ (n) E n (t). 

In Eqs. (2.8) and (2.9), 

Am (n)= 

w h e r e  a n a r e  the  r o o t s  of  the equa t ion  

s  5i t] ~t0~ n (CO$ 6g~ n "4" 1) + e~ -1 sin 8zc~, (cos ~i#, • 1) 

[61 (sin 6# ,J  - I  - -  6 2 (sin 62a, J - t ]  (cos 6#~  - -  cos 61c~) 

1, n = n '  
E= (t) = exp ( - -  ct, 2 t), 6~. = 0, n =/= n'. 

(2.8) 

(2.9) 

(e~ + el) sin 6 #  sin 8z• + 2eie z (I - -  cos 6in cos 62c~ ) = 0. 

T h e  e x p r e s s i o n  in c u r l y  b r a c k e t s  in Eq. (2.8) is  nonze ro  on ly  in the  c a s e  n ' / m '  =6  2/6 1. 

w In the  l im i t i ng  c a s e  when one of  the s e c t i o n s  of  the  c o m p o s i t e  r i n g  c o n t r a c t s  to a point ,  the  solut ion  
ob ta ined  t r a n s f o r m s  to a so lu t ion  of  the  S o m m e r f e l d  p r o b l e m  [1]. The  c o r r e s p o n d i n g  ca l cu l a t i ons  a r e  r a t h e r  
c u m b e r s o m e ,  and  so the  d i s c u s s i o n  wil l  be  conf ined  to the l imi t ing  t r a n s i t i o n  for  the  t e m p e r a t u r e  at  the  c o n -  
t a c t  point  of  the s e c t i o n s .  F o r  c o n s i s t e n c y  with [1], le t  

7,(x,, t ) = 0 ,  r  ~ t , = { i , = 6 ,  e , = , = e .  (3.1) 

Subs t i tu t ing  Eq. (3.1) into Eq. (2.7) y i e lds  

O , n = 2 k ,  k = l ,  2 . . . .  
-j(,o =[(_t)~+ , x~ 2 k - - l  , n = 2 ~ - - t .  (3.2) 

li Ii 

Then  

F r o m  Eqs.  (2.1)-(2.4) it is  found tha t  

( - -  1) k+l ( 2 k -  1)(p + ~2~_t) -x (p + [~2h_t) -I  , 

1 1 (3.4) 

2 V ~  st, 6 V ~  
2 

which  m a y  be  r e d u c e d ,  u s ing  [7], to the f o r m  
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Using [8], the following expression is obtained for the original of Eq. (3.4): 

~( t )= O(t) 03( l l  --2 ' --4atl 2 )_ 
oo 

= O(t) [ +  + --~-- ~ (--1)kexp ( 4k2a~ 

For l = 1 

w 
used: 

__at)] 
this result  agrees with the expression for p(t) for u(~ 1/2, t) in [1]. 

Consider the behavior of ~j (t) at the initial moment of time. The well-known relation of [6] will be 

~j(-+- O) = }imo~j (t) = lim p~j(p). (4.1) 

It may be shown that there is no contribution to ~j (+0) from finite ~(xi, t); therefore, setting fi(xi, t) = 0, 

(4.2) 

consider the particular ease of a linear initial temperature distribution 
X~ 

~ i  (xi)  = ~ o  + ( ~ ,  - -  ~ o ) - 7 - ,  ~io = ~ (0),  ~ u  = ~ i  (I~). 

After simple transformations, Eqs. (2.1)-(2.7) yield 

~,(+0)= K*ch~176 , ~(+0)= K~cP,,+~2, , (4.3) 
I+K~ i+K, 

where the notation of [8] is used: Ke =el/e~. Thus, in the case of a linear initial temperature profile, the 
initial discontinuity of the matching hmction ~j (t), i.e., hj = ~j (+0) - ~j (-0) =~j (+ 0), is determined solely 
by the boundary values. 

The ease of constant but different initial temperatures in the sections of the ring may be considered by 
setting (Pi0=q)il =Ti0 in Eq. (4.2). Then Eq. (4.3) gives 

~t(+ 0) = ~2(+0) = K~T'~ + T2~ (4.4) 
I+K~ 

If the sections have the same thermophysical parameters (~ 1 = ~ 2, Kc = 1), Eq. (4.4) yields 

~, (+ 0) = ~2(+ 0) = T~~ + T2~ 
2 

in agreement with the problem on the contact of two half-spaces with different initial temperatures [8]. 
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